© Springer-Verlag 2000 Printed in Austria

Morpholine Adsorbed on Silica Gel: A Novel and Mild Basic Catalyst for the Synthesis of α,β -Unsaturated Nitroalkenes

Babasaheb P. Bandgar*, Lav S. Uppalla, and Vaibhav S. Sadavarte

Organic Chemistry Research Laboratory, School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, India

Summary. Syntheses of α,β -unsaturated nitroalkenes have been carried out under mild condition using morpholine adsorbed on silica gel as a novel catalyst.

Keywords. Henry reaction; Morpholine adsorbed on silica gel; Base catalyst; α,β -Unsaturated nitroalkenes.

Introduction

Nitroalkenes are considered important because of their biological activities as insecticidal [1, 2], fungicidal [2–5], bactericidal [6, 7], rodentrepellent [8], and antitumor agents [9] as well as of other pharmacological values [6–9]. They have proved to be suitable precursors for a wide variety of target molecules. The utility of nitroalkenes in organic synthesis is largely due to their easy conversion into a variety of functionalities [10, 11]. Alternatively they are powerful dienophiles in *Diels-Alder* reactions and readily undergo addition reactions with many different nucleophiles [11]. A few nitroalkenes also occur in nature [12].

The most versatile and classical preparation of nitroalkenes involves the *Henry* condensation reaction, followed by dehydration of the resultant β -nitro alcohols [13]. For this purpose several reagents have been used [14–15]. Recently, nitroalkenes have been synthesized using Envirocat EPZG and microwaves under drastic conditions [16, 17]. The significance of nitroalkenes and the increasing importance of heterogenous catalysis in organic synthesis prompted us to investigate the *Henry* reaction in more detail.

^{*} Corresponding author

950 B. P. Bandgar et al.

In this contribution we report on the synthesis of α,β -unsaturated nitroalkenes using morpholine supported on silica gel as an inexpensive and mild catalyst (Scheme 1).

Results and Discussion

The attempt to prepare α,β -unsaturated nitroalkenes using either morpholine or silica gel as a catalyst resulted in very poor yields, even after stirring for 12 h at room temperature. In contrast, morpholine adsorbed on silica gel acts as a mild and effective catalyst for the synthesis of various nitroolefins in good to excellent yields.

Scheme 1

The (E)-geometry of the newly formed double bond was readily assigned on the basis of ${}^{1}H$ NMR spectra, the vinyl proton of the (E)-isomer appearing at lower field than the corresponding proton of the (Z)-isomer because of the strong anisotropic effect of the nitro group [15]. ${}^{13}C$ NMR spectra of the products indicated that no contamination with (Z)-isomers occurred [14–15].

In summary, the presented method offers a mild and useful alternative to existing procedures for the chemoselective synthesis of functionalized conjugated nitroalkenes.

Exprimental

IR spectra were recorded on a Bomem MB 104 FTIR spectrometer, ¹H NMR spectra on a Varian 90 MHz NMR instrument (Varian FT90).

Preparation of the catalyst

A mixture of 5 g silica gel (60–120 mesh) and 1 cm³ morpholine in 10 cm³ acetone was stirred at room temperature for 1 h. Acetone was removed under vacuum to get a free-flowing powder of morpholine adsorbed on silica gel.

General procedure for the synthesis of α, β -unsaturated nitroalkenes

A mixture of aldehyde/ketone (5 mmol), nitromethane/nitropropane (6 mmol), and $1.5 \,\mathrm{g}$ morpholine adsorbed on silica gel in $10 \,\mathrm{cm}^3$ acetonitrile was stirred at room temperature for the specified time (Table 1). After completion of the reaction the catalyst was filtered off and washed twice with $10 \,\mathrm{cm}^3$ ether. Removal of the solvent under reduced pressure gave a crude product which was further purified by column chromatography (silica gel $60-120 \,\mathrm{mesh}$, petroleum ether:ethylacetate = 4:1).

Table 1. α,β -Unsaturated nitroalkenes synthesized by *Henry*'s procedure catalyzed by morpholine adsorbed on silica gel^a

R^1	R^2	R	Reaction time/h	Yield/%	Melting point/°C	Melting point/°C (Literature)
NO,	Н	Н	0.2	78	125	124–126 [20]
NO ₂ NO ₂	Н	Н	0.5	75	104	104 [20]
©	Н	Н	6	80	112	111 [20]
HO OMe	Н	Н	2	68	167	167–168 [19]
но	Н	Н	2	65	168	168–169 [19]
CH=CH-	Н	Н	1.5	75	oil	-
(CH ₂) ₅		Н	1	74	oil	-
\Diamond	Н	Н	2.5	76	58	58–59 [19]
О СН,	Н	CH ₃	01	78	44	44–45 [19]
\Diamond	Н	CH_3	03	80	63	64–65 [19]
CI	Н	Н	0.8	80	118	120 [20]

^a Yields refer to pure, isolated products characterized by physical constants, spectroscopic properties, and comparison with authentic samples

References

- [1] Brown AWA, Robinson DBW Hurtig H, Wenner BJ (1948) Can J Res 26D: 177
- [2] Bousquet EW, Kirby JE, Searle NEUS, Patent (1943) 2, 335, 384; Chem Abstr (1944) 38: 2834
- [3] Brian PW, Grove JF, McGowan (1946) J C Nature **158**: 876
- [4] McGowan JC, Brian PW, Hemmign HG (1948) Ann Appl Biol 35: 25
- [5] Bocobo FC, Curtis AC, Block WD, Harrell ER, Evans EE, Haines RF (1956) Antibiol Chemother6: 385
- [6] Schales O, Graefe HA (1952) J Am Chem Soc 74: 4486
- [7] Dann O, Moller EF (1949) Chem Ber 82: 76
- [8] Harker RJ (1959) U.S. Patent 2889 2436; Chem Abstr (1959) 53: 17414i
- [9] Zee-Cheng K, Cheng C (1969) J Med Chem 12: 157
- [10] Ballini R, Bosica G (1994) Synthesis 723
- [11] a) Kabalka GW, Guindi LHM, Varma RS (1990) Tetrahedron **46**: 7443; b) Barrent AGM (1991) Chem Soc Rev **20**: 95
- [12] Vrkov J, Ubik K (1974) Tetrahedron Lett 1463

- [13] Henry LCR (1895) Acad Sci 120: 1265
- [14] Balini R, Chatagnani R, Petrini M (1992) J Org Chem 57: 2160
- [15] Saikia A, Barua NC, Sharma RP, Ghosh AC (1994) Synthesis 685
- [16] Bandgar BP, Zirange MB, Wadgaonkar PP (1996) Synlett 149
- [17] a) Varma RS (1999) Green Chemistry 1: 43; b) Lupy A, Petit A, Hamelin J, Texier-Boullet I, Jacquault, Mathe D (1998) Synthesis 1213
- [18] Natekar RS, Samant SD (1996) Ind J Chem 35B: 1347
- [19] Gairaud CB, Latpin GR (1953) J Org Chem 18: 1
- [20] Dictionary of Organic Compounds, 6th edn. Chapman & Hall, London 1995

Received February 14, 2000. Accepted March 28, 2000